Intro Linear Algebra 3A: midterm 1

Wednesday April 20, 2:00-2:50pm
There are 3 exercises, worth a total of $100=42+28+30$ points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise $1(42=6+16+8+5+7 \mathrm{pts})$
Let

$$
A=\left[\begin{array}{ccccc}
-1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
-3 & 0 & -1 & 0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
2 \\
5 \\
-3
\end{array}\right], C=\left[\begin{array}{cc}
1 & 1 \\
0 & -1 \\
0 & 1 \\
1 & -1 \\
2 & 0
\end{array}\right]
$$

(a) Compute $A C$.
(b) Compute the reduced row echelon form of the augmented matrix $[A \mid \mathbf{b}]$.
(c) Solve $A \mathbf{x}=\mathbf{b}$ in parametric vector form.
(d) Is the linear map corresponding to A onto?
(e) Are the columns of A linearly independent? If they are dependent, find a linear dependence relation among the columns of A.

Solution:

(a)

$$
\left[\begin{array}{cc}
2 & -3 \\
4 & 0 \\
-1 & -4
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 & 2 & 3
\end{array}\right]
$$

(c) $x_{4}[0,-1,0,1,0]^{T}+x_{5}[1,0,-2,0,1]^{T}+[0,2,3,0,0]^{T}$.
(d) Yes, pivot in every row of reduced row echelon form of A (no zero rows in RREF of A).
(e) No. For examle, second column minus fourth column is 0 (find any vector in null space: you can find null space from c , which is just $x_{4}[0,-1,0,1,0]^{T}+$ $\left.x_{5}[1,0,-2,0,1]^{T}\right)$.

Exercise $2(28=7+15+6 \mathrm{pts})$
Consider the vectors

$$
\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

in \mathbf{R}^{3}.
(a) Show that $\mathbf{e}_{\mathbf{1}}=[1,0,0]^{T}, \mathbf{e}_{\mathbf{2}}=[0,1,0]^{T}$ and $\mathbf{e}_{\mathbf{3}}=[0,0,1]^{T}$ are in the span of $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3}.
(b) Construct a 2×3 matrix A such that $A \mathbf{u}_{1}=[0,1]^{T}, A \mathbf{u}_{2}=[1,0]^{T}$ and $A \mathbf{u}_{3}=[1,1]^{T}$.
(c) How many linear maps $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ satisfy $T\left(\mathbf{u}_{1}\right)=[0,1]^{T}, T\left(\mathbf{u}_{\mathbf{2}}\right)=[1,0]^{T}$ (choose from 0,1 , or infinitely many)? Explain.

Solution:

(a) One can compute the RREF of $\left[\mathbf{u}_{\mathbf{1}} \mathbf{u}_{\mathbf{2}} \mathbf{u}_{\mathbf{3}}\right]$, which is the identity: this means that any augmented system is consistent. In fact, one has:

$$
\begin{aligned}
& \mathbf{e}_{1}=-\mathbf{u}_{2}+\mathbf{u}_{3} \\
& \mathbf{e}_{2}=-\mathbf{u}_{1}+3 \mathbf{u}_{2}-\mathbf{u}_{3} \\
& \mathbf{e}_{3}=2 \mathbf{u}_{2}-\mathbf{u}_{3}
\end{aligned}
$$

(these are unique solutions).
(b) There are multiple ways of solving this, one is by using 6 variables for the matrix system, and then solving it. But, in our case, we can use our expressions from (a) to find:

$$
\left[\begin{array}{ccc}
0 & 2 & 1 \\
1 & -2 & -1
\end{array}\right]
$$

This matrix satisfies the required properties, and is unique.
(c) Infinitely many. If one makes a system, one gets a system in 6 variables with 4 equations which is consistent by (b). Hence there are at least 2 free variables and infinitely many solutions.

Exercise 3 (30 pts)
True or false? No explanation required. Points is $-10+4 \cdot \#$ correct.
(1) The vectors $[1,2,3]^{T}$ and $[2,4,5]^{T}$ are linearly dependent.
(2) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Then there is a unique $n \times m$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbf{R}^{n}$.
(3) The map $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by $(x, y, z) \mapsto(x y+1-y x-1+x+y, y+z, z)$ is not linear.
(4) Let T be the linear map on the $x y$-plane which is the reflection in the x-axis. Then T is one-to-one.
(5) Let A be an $n \times n$ matrix and let $\mathbf{x} \in \mathbf{R}^{n}$ be such that $A \mathbf{x}=\lambda \mathbf{x}$ for some $\lambda \in \mathbf{R}$. Then one has $A^{42} \mathbf{x}=\lambda^{42} \mathbf{x}$.
(6) Let A be a matrix with n columns, p pivots and f free variables. Then one has $n=p+f$.
(7) Let $T: \mathbf{R}^{7} \rightarrow \mathbf{R}^{3}$ be a linear map. Then T is onto.
(8) There is a linear map $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ with

$$
T\left([1,0]^{T}\right)=[1,0]^{T}, T\left([0,1]^{T}\right)=[1,1]^{T}, T\left([1,-1]^{T}\right)=[0,1]^{T}
$$

(9) The linear map corresponding to the matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

is the projection onto the x_{1}-axis.
(10) Let A, B be square matrices such that $A B=B A$. Then one has $(A+B)^{3}=$ $A^{3}+3 A^{2} B+3 A B^{2}+B^{3}$.

Solution:

(1) False, not multiple of each other.
(2) False, it is an $m \times n$ matrix.
(3) False, it is linear, just $(x, y, z) \mapsto(x+y, y+z, z)$.
(4) True (if $T \mathbf{x}=T \mathbf{y}$, then $\mathbf{x}=T^{2} \mathbf{x}=T^{2} \mathbf{y}=\mathbf{y}$).
(5) True, $A^{42} \mathbf{x}=\lambda A^{41} \mathbf{x}=\ldots=\lambda^{42} \mathbf{x}$.
(6) True, one sees this from the definition.
(7) False, 0 matrix is not onto.
(8) False, the first two equations show that the matrix would be

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] .
$$

But this matrix has $A[1,-1]^{T}=[0,-1]^{T}$, which is not $[0,1]^{T}$. So no such map exists.
(9) False, the map is given by

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

(10) True, one can just work out the produt and use $A B=B A$.

