Intro Linear Algebra 3A: midterm 1
Friday January 29, 3:00- 3:50pm
There are 3 exercises, worth a total of $100=48+16+36$ points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations.
Name:

Student ID:

Exercise $1(48=6+22+8+4+4+4 \mathrm{pts})$
Let

$$
\mathbf{A}=\left[\begin{array}{rrrrr}
-1 & 0 & 0 & 1 & 4 \\
1 & 0 & 1 & 1 & 8 \\
-3 & 0 & -1 & 0 & -5
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
4 \\
10 \\
-8
\end{array}\right], \mathbf{c}=\left[\begin{array}{r}
1 \\
0 \\
2 \\
0 \\
-1
\end{array}\right]
$$

(a) Compute Ac.
(b) Compute the reduced row echelon form of $[\mathbf{A} \mid \mathbf{b}]$.
(c) Solve $\mathbf{A x}=\mathbf{b}$ in parametric vector form.
(d) Solve $\mathbf{A x}=\mathbf{0}$ in parametric vector form.
(e) Is $\mathbf{A}: \mathbf{R}^{5} \rightarrow \mathbf{R}^{3}$ onto?
(f) Are the columns of A linearly independent?

Answers:

(a) $[-5,-5,0]^{T}$.
(b)

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 & 2 & 2 \\
0 & 0 & 0 & 1 & 5 & 6
\end{array}\right]
$$

(c) $x_{2}[0,1,0,0,0,0]^{T}+x_{5}[-1,0,-2,-5,1]^{T}+[2,0,2,6,0]^{T}$.
(d) $x_{2}[0,1,0,0,0,0]^{T}+x_{5}[-1,0,-2,-5,1]^{T}$: just take the part with free variables.
(e) Yes, every row has a pivot.
(f) No, there are free variables.

Exercise $2(16=6+6+4 \mathrm{pts})$
Consider the $x y$-plane \mathbf{R}^{2}. Let T_{1} be the linear map which rotates 90 degrees clockwise around the origin. Let T_{2} be the linear map which reflects in the y-axis.
(a) Compute the matrix \mathbf{A} of the linear map T_{1}.
(b) Compute the matrix \mathbf{B} of the linear map T_{2}.
(c) Compute $\mathbf{A B}$ and $\mathbf{B A}$.

Answers:

(a)

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

(b)

$$
\mathbf{B}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

(c)

$$
\mathbf{A B}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

and

$$
\mathbf{B A}=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

Exercise 3 ($36=3+3+\ldots+3 \mathrm{pts})$
True or false? No explanation required.
(1) The matrix $\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$ is in reduced row echelon form.
(FALSE): upper right one should not be there.
(2) The matrix $\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$ has precisely 1 free variable.
(FALSE): thre are 2 free variables. (3) The map $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $(x, y) \mapsto$ $(x, \sin y)$ is not linear.
(TRUE): (proof omitted).
(4) The map $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $(x, y) \mapsto(x+y, 2 x+y+1)$ is linear.
(FALSE): 0 does not go to 0 .
(5) The linear map given by the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$ is not one-to-one.
(TRUE) It has free variables, so not one-to-one (3 columns in \mathbf{R}^{2} are linearly dependent).
(6) The vectors $\left\{[1,2,3]^{T},[2,3,4]^{T},[0,0,0]^{T}\right\}$ are linearly independent.
(FALSE): dependent because of 0 vector.
(7) If \mathbf{A} is an $n \times n$ matrix such that \mathbf{A} is one-to-one, then so is \mathbf{A}^{2}.
(TRUE): If $A^{2} x=0$, then $A(A x)=0$. Since A is one-to-one this means $A x=0$.
Hence $x=0$.
(8) The set $\left\{[1,2]^{T},[1,3]^{T}\right\}$ spans \mathbf{R}^{2}.
(TRUE): reduced row echelon form is identity matrix.
(9) There is no 4×4 matrix \mathbf{A} such that the map $\mathbf{A}: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ is one-to-one but not onto.
(TRUE) one-to-one means no free variables, so every column has a pivot, so every row has a pivot.
(10) Let \mathbf{A}, \mathbf{B} be 2×2 matrices. Then one has $(\mathbf{A}-\mathbf{B})(\mathbf{A}+\mathbf{B})=\mathbf{A}^{2}-\mathbf{B}^{2}$.
(FALSE) this is true if and only if $\mathbf{A B}=\mathbf{B} \mathbf{A}$.
(11) Let \mathbf{A}, \mathbf{B} be 2×2 matrices such that $\mathbf{A B}=\mathbf{B A}$. Then one has $\mathbf{A B A B A A B}=$

BABAABA.

(TRUE): Both are $A^{4} B^{3}$.
(12) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a function (a map). Then there is a 2×2 matrix \mathbf{A} such that for all $\mathbf{x} \in \mathbf{R}^{2}$ one has $T(\mathbf{x})=\mathbf{A} \mathbf{x}$.
(FALSE): This is only true if T is linear.

