Intro Linear Algebra 3A: midterm 1 Friday January 29, 3:00- 3:50pm

There are 3 exercises, worth a total of 100 = 48 + 16 + 36 points. Non-graphical calculators allowed. No books or notes allowed. Provide computations and or explanations.

Name:

Student ID:

Exercise 1 (48 = 6 + 22 + 8 + 4 + 4 + 4 pts)Let

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 & 1 & 4 \\ 1 & 0 & 1 & 1 & 8 \\ -3 & 0 & -1 & 0 & -5 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 4 \\ 10 \\ -8 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \\ -1 \end{bmatrix}.$$

(a) Compute Ac.

(b) Compute the reduced row echelon form of $[\mathbf{A}|\mathbf{b}]$.

(c) Solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ in parametric vector form.

(d) Solve $\mathbf{A}\mathbf{x} = \mathbf{0}$ in parametric vector form.

(e) Is $\mathbf{A}: \mathbf{R}^5 \to \mathbf{R}^3$ onto?

(f) Are the columns of **A** linearly independent?

Answers:

(a) $[-5, -5, 0]^T$. (b)

(c) $x_2[0, 1, 0, 0, 0, 0]^T + x_5[-1, 0, -2, -5, 1]^T + [2, 0, 2, 6, 0]^T$. (d) $x_2[0, 1, 0, 0, 0, 0]^T + x_5[-1, 0, -2, -5, 1]^T$: just take the part with free variables.

(e) Yes, every row has a pivot.

(f) No, there are free variables.

Exercise 2 (16 = 6 + 6 + 4 pts)Consider the xy-plane \mathbb{R}^2 . Let T_1 be the linear map which rotates 90 degrees clockwise around the origin. Let T_2 be the linear map which reflects in the *y*-axis. (a) Compute the matrix **A** of the linear map T_1 .

(b) Compute the matrix **B** of the linear map T_2 .

(c) Compute AB and BA.

Answers:

(a)

(b)

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$
(c)

$$\mathbf{AB} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.$$
(c)

$$\mathbf{AB} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

and

$$\mathbf{BA} = \left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right].$$

Exercise 3 $(36 = 3 + 3 + \ldots + 3 \text{ pts})$ True or false? No explanation required.

(1) The matrix $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ is in reduced row echelon form. (FALSE): upper right one should not be there.

(2) The matrix $\begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ has precisely 1 free variable.

(FALSE): thre are 2 free variables. (3) The map $\mathbf{R}^2 \to \mathbf{R}^2$ defined by $(x, y) \mapsto$ $(x, \sin y)$ is not linear.

(TRUE): (proof omitted).

(4) The map $\mathbf{R}^2 \to \mathbf{R}^2$ defined by $(x, y) \mapsto (x + y, 2x + y + 1)$ is linear. (FALSE): 0 does not go to 0.

(5) The linear map given by the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$ is not one-to-one.

(TRUE) It has free variables, so not one-to-one (3 columns in \mathbf{R}^2 are linearly dependent).

(6) The vectors $\{[1,2,3]^T, [2,3,4]^T, [0,0,0]^T\}$ are linearly independent. (FALSE): dependent because of 0 vector.

(7) If **A** is an $n \times n$ matrix such that **A** is one-to-one, then so is \mathbf{A}^2 .

(TRUE): If $A^2x = 0$, then A(Ax) = 0. Since A is one-to-one this means Ax = 0. Hence x = 0.

(8) The set $\{[1,2]^T, [1,3]^T\}$ spans \mathbb{R}^2 .

(TRUE): reduced row echelon form is identity matrix.

(9) There is no 4×4 matrix **A** such that the map $\mathbf{A} : \mathbf{R}^4 \to \mathbf{R}^4$ is one-to-one but not onto.

(TRUE) one-to-one means no free variables, so every column has a pivot, so every row has a pivot.

(10) Let \mathbf{A}, \mathbf{B} be 2×2 matrices. Then one has $(\mathbf{A} - \mathbf{B})(\mathbf{A} + \mathbf{B}) = \mathbf{A}^2 - \mathbf{B}^2$.

(FALSE) this is true if and only if AB = BA.

(11) Let \mathbf{A}, \mathbf{B} be 2×2 matrices such that $\mathbf{AB} = \mathbf{BA}$. Then one has $\mathbf{ABABAAB} =$ BABAABA.

(TRUE): Both are A^4B^3 .

(12) Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be a function (a map). Then there is a 2×2 matrix **A** such that for all $\mathbf{x} \in \mathbf{R}^2$ one has $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$.

(FALSE): This is only true if T is linear.