Intro Linear Algebra 3A: midterm 2
Monday February 27 2017, 00:00-00.50 pm

There are 4 exercises, worth a total of $100=35+16+21+28$ points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise $1(35=5+5+10+10+5 \mathrm{pts})$ For $s \in \mathbf{R}$ consider the matrix

$$
A_{s}=\left[\begin{array}{lll}
2 & 1 & 2 \\
2 & s & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(a) Compute A_{s}^{2} when $s=0$.
(b) For which s is A_{s} invertible?
(c) Compute the inverse of A_{s} by using elementary row operations when $s=1$.
(d) Compute the inverse of A_{s} by using Cramer's rule (determinants) when $s=2$.
(e) (Hard) For which s is the upper left entry of A_{s}^{-1} equal to 5 ?

Solution:

(a)

$$
A_{0}^{2}=\left[\begin{array}{lll}
6 & 4 & 7 \\
4 & 3 & 5 \\
2 & 1 & 2
\end{array}\right]
$$

(b) $\operatorname{det}\left(A_{s}\right)=2 s$, so invertible when $s \neq 0$.
(c) $\left[\begin{array}{rrr}0 & \frac{1}{2} & -\frac{1}{2} \\ -1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right]$.
(d) $\left[\begin{array}{rrr}\frac{1}{4} & \frac{1}{4} & -\frac{3}{4} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\end{array}\right]$.
(e) The first entry of the inverse, by Cramer's rule, is equal to $(s-1) / 2 s$. So $s=-1 / 9$ is the only solution.

Exercise $2(16=7+7+2 \mathrm{pts})$
Consider the matrix

$$
M=\left[\begin{array}{rrrrr}
1 & 2 & -1 & 1 & -1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 3 & -2 & -1 & 1 \\
2 & 3 & -1 & 2 & 0
\end{array}\right]
$$

with reduced row echelon form

$$
E=\left[\begin{array}{rrrrr}
1 & 0 & 1 & 0 & 5 \\
0 & 1 & -1 & 0 & -2 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Compute a basis of the null space of M.
(b) Compute a basis of the column space of M.
(c) What is the rank of M ?

Solution:

(a) $\left\{[-1,1,1,0,0]^{T},[-5,2,0,2,1]^{T}\right\}$.
(b) Take first, second and fourth column of M.
(c) 3 .

Exercise 3 ($21=7+14 \mathrm{pts}$)
Consider the matrix

$$
A=\left[\begin{array}{ccc}
3 & -1 & 1 \\
2 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(a) Compute the characteristic polynomial of A and show that $1,1,2$ are the eigenvalues of A (counted with multiplicities).
(b) For each eigenvalue of A, compute a basis for its corresponding eigenspace.

Solution:

(a) $-(\lambda-1)^{2}(\lambda-2)$ is the characteristic polynomial. Eigenvalues follow easily.
(b) $\lambda=1:\left\{[-1,0,2]^{T},[1,2,0]^{T}\right\}$. For $\lambda=2$, one gets $\left\{[1,1,0]^{T}\right\}$.

Exercise 4 (28 pts)
True or false? No explanation required. Points is $-12+4 \cdot \#$ correct.
(1) Let A, B be matrices of the same size. Then one has $(A+B)^{T}=B^{T}+A^{T}$.
(2) Let A be an $n \times m$ matrix with column space \mathbf{R}^{n}. Then A is invertible.
(3) Any plane in \mathbf{R}^{3} is a subspace of \mathbf{R}^{3}.
(4) Any subspace of \mathbf{R}^{n} has a unique basis.
(5) Let A be a square matrix which is not invertible and let $c \in \mathbf{R}$. Then one has $\operatorname{det}(c A)=c \operatorname{det}(A)$.
(6) Let A, B be two square matrices of the same size. One has $\operatorname{det}(A+B)=$ $\operatorname{det}(A)+\operatorname{det}(B)$.
(7) Let A be a 3×3 matrix with determinant -1 . Then the linear transformation defined by A preserves volumes.
(8) Let A be a square matrix with eigenvalue 3 . Then A^{5} is a matrix with eigenvalue 3^{5}.
(9) If A, B be $n \times n$ matrices. If \mathbf{x} is an eigenvector of both A and B, then \mathbf{x} is an eigenvector of $A B$.
(10) Let A, B be $n \times n$ matrices. Then one has $(A+B)^{2}=A^{2}+2 A B+B^{2}$.

Solution:

(1) True.
(2) False, not square.
(3) False, does not contain 0 in general.
(4) False, many bases exist.
(5) True, both are 0.
(6) False.
(7) True.
(8) True.
(9) True.
(10) False.

