Intro Linear Algebra 3A: midterm 2
Wednesday February 29 2018, 3:00-3.50 pm

There are 4 exercises, worth a total of 40 points.
No calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise $1(13=2+2+3+2+1+2+1 \mathrm{pts})$
For $x \in \mathbf{R}$ consider the matrix

$$
A_{x}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & x & 1 \\
1 & 2 & x
\end{array}\right]
$$

(a) Compute $\operatorname{det}\left(A_{x}\right)$.
(b) For which x is A_{x} invertible?
(c) Compute the inverse of A_{0}.
(d) Find a basis of the null space of A_{-1}.
(e) What is the dimension of the null space of A_{-1} ?
(f) Find a basis of the column space of A_{2}.
(g) What is the rank of A_{2} ?

Solution:

(a) $x^{2}-x-2=(x-2)(x+1)$.
(b) $x \neq 2,-1$.
(c)

$$
\left[\begin{array}{rrr}
1 & -1 & 0 \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 0
\end{array}\right]
$$

(d) $\left\{[-1,1,1]^{T}\right\}$.
(e) 1 .
(f) $\left\{[1,0,1]^{T},[0,2,2]^{T}\right\}$.
(g) 2 .

Exercise $2(6=2+2+2 \mathrm{pts})$
(a) Compute the matrix product

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
0 & 1 & 2 \\
1 & -2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

(b) Find a matrix X such that

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
1 & 0 & -1
\end{array}\right]+2 X^{T}=0
$$

(c) Find a nonzero 2×2 matrix A with $A^{2}=0$.

Solution:

(a)

$$
\left[\begin{array}{rrr}
5 & 0 & 10 \\
-1 & 0 & 0 \\
2 & 0 & 5
\end{array}\right]
$$

(b)

$$
X=-1 / 2\left[\begin{array}{rr}
1 & 1 \\
2 & 0 \\
3 & -1
\end{array}\right]
$$

(c)

$$
A=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

Exercise 3 ($11=2+1+4+2+2$ pts)
Consider the matrix

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 2 & 0 \\
-1 & 0 & 4
\end{array}\right]
$$

(a) Compute the characteristic polynomial of A.
(b) Show that 2 and 3 are the only eigenvalues of A.
(c) For each eigenvalue, find a basis of the corresponding eigenspace.
(d) Sow that A diagonalizable by finding a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$.
(e) Is A^{2018} diagonalizable? If so, find a diagonal matrix D^{\prime} and an invertible matrix P^{\prime} such that $A^{2018}=P^{\prime} D^{\prime} P^{\prime-1}$.

Solution:

(a) $-(\lambda-3)(\lambda-2)^{2}$.
(b) See factorization in (a).
(c) $2:\left\{[2,0,1]^{T},[0,1,0]^{T}\right\}, 3:\left\{[1,0,1]^{T}\right\}$.
(d) $D=\operatorname{diag}(2,2,3)$,

$$
P=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(e) Yes, take $P^{\prime}=P$ and $D^{\prime}=D^{2018}$.

Exercise 4 (10 pts)
True or false? No explanation required. Each question is worth 1 point.
(1) If A is an invertible $n \times n$ matrix and $A B=I_{n}$, then $B=A^{-1}$.
(2) Let A be a matrix. If the columns of A are linearly independent, then A is invertible.
(3) Let U be a subspace of \mathbf{R}^{n}. Then $\operatorname{dim}(U)<n$.
(4) Let A, B be 2×2 matrices with determinant 2 . Then $\operatorname{det}\left(2 A^{T} B^{-1}\right)=2$.
(5) Let A be an $n \times n$ matrix with integer coefficients and determinant 1. Then A^{-1} only has integer coefficients.
(6) If A, B are $n \times n$ matrices which are both diagonalizable, then $A+B$ is diagonalizable.
(7) An $n \times n$ matrix A has eigenvalue 0 if and only if A is not invertible.
(8) If A, B are $n \times n$ matrices, then $(A-B)(A+B)=A^{2}-B^{2}$.
(9) The points in \mathbf{R}^{3} satisfying $x+y+z=1$ form a subspace of \mathbf{R}^{3}.
(10) Let A be an $n \times n$ matrix with 2 identical columns. Then $\operatorname{det}(A)=0$.

Solution:

(1) True.
(2) False.
(3) False.
(4) False.
(5) True.
(6) False.
(7) True.
(8) False.
(9) False.
(10) True

