Intro Linear Algebra 3A: midterm 2

Wednesday February 29 2018, 3:00–3.50 pm

There are 4 exercises, worth a total of 40 points. No calculators allowed. No books or notes allowed. Provide computations and or explanations, unless stated otherwise.

Name:

Student ID:

Exercise 1 (13 = 2 + 2 + 3 + 2 + 1 + 2 + 1 pts) For $x \in \mathbf{R}$ consider the matrix

$$A_x = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 0 & x & 1 \\ 1 & 2 & x \end{array} \right].$$

- (a) Compute $det(A_x)$.
- (b) For which x is A_x invertible?
- (c) Compute the inverse of A_0 .
- (d) Find a basis of the null space of A_{-1} .
- (e) What is the dimension of the null space of A_{-1} ?
- (f) Find a basis of the column space of A_2 .
- (g) What is the rank of A_2 ?

Solution:

- (a) $x^2 x 2 = (x 2)(x + 1).$ (b) $x \neq 2, -1.$ (c) $\begin{bmatrix} 1 & -1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$
- $\begin{array}{l} (\mathbf{d}) \ \{[-1,1,1]^T\}.\\ (\mathbf{e}) \ 1.\\ (\mathbf{f}) \ \{[1,0,1]^T, [0,2,2]^T\}.\\ (\mathbf{g}) \ 2. \end{array}$

Exercise 2 (6 = 2 + 2 + 2 pts)(a) Compute the matrix product

1	2	3	0	1	2	1
1	0	-1	1	-2	1	
1	1	1	1	1	2	

(b) Find a matrix X such that

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{bmatrix} + 2X^T = 0$$

(c) Find a nonzero 2×2 matrix A with $A^2 = 0$.

Solution:

(a)

$$\left[\begin{array}{rrrr} 5 & 0 & 10 \\ -1 & 0 & 0 \\ 2 & 0 & 5 \end{array}\right]$$

(b)

$$X = -1/2 \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 3 & -1 \end{bmatrix}$$

(c)

 $A = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right]$

Exercise 3 (11 = 2 + 1 + 4 + 2 + 2 pts)Consider the matrix

$$A = \left[\begin{array}{rrrr} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 4 \end{array} \right].$$

(a) Compute the characteristic polynomial of A.

(b) Show that 2 and 3 are the only eigenvalues of A.

(c) For each eigenvalue, find a basis of the corresponding eigenspace.

(d) Sow that A diagonalizable by finding a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$.

(e) Is A^{2018} diagonalizable? If so, find a diagonal matrix D' and an invertible matrix P' such that $A^{2018} = P'D'P'^{-1}$.

Solution:

(a) $-(\lambda - 3)(\lambda - 2)^2$. (b) See factorization in (a). (c) 2: $\{[2, 0, 1]^T, [0, 1, 0]^T\}$, 3: $\{[1, 0, 1]^T\}$. (d) D = diag(2, 2, 3),

$$P = \left[\begin{array}{rrr} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right].$$

(e) Yes, take P' = P and $D' = D^{2018}$.

Exercise 4 (10 pts)

True or false? **No** explanation required. Each question is worth 1 point.

(1) If A is an invertible $n \times n$ matrix and $AB = I_n$, then $B = A^{-1}$.

(2) Let A be a matrix. If the columns of A are linearly independent, then A is invertible.

(3) Let U be a subspace of \mathbf{R}^n . Then dim(U) < n.

(4) Let A, B be 2×2 matrices with determinant 2. Then $det(2A^TB^{-1}) = 2$.

(5) Let A be an $n \times n$ matrix with integer coefficients and determinant 1. Then A^{-1} only has integer coefficients.

(6) If A, B are $n \times n$ matrices which are both diagonalizable, then A + B is diagonalizable.

(7) An $n \times n$ matrix A has eigenvalue 0 if and only if A is not invertible.

(8) If A, B are $n \times n$ matrices, then $(A - B)(A + B) = A^2 - B^2$.

(9) The points in \mathbf{R}^3 satisfying x + y + z = 1 form a subspace of \mathbf{R}^3 .

(10) Let A be an $n \times n$ matrix with 2 identical columns. Then det(A) = 0.

Solution:

- (1) True.
- (2) False.
- (3) False.
- (4) False.
- (5) True.
- (6) False.

(7) True.

- (8) False.(9) False.(10) True.
- 4