Intro Linear Algebra 3A: final exam answers

Wednesday December 9, 10:30-12:30pm

Exercise 1

(a1) No, reduced row echelon form has a zero row.
(a2) No, there are free variables.
(a3) No: use either a , b or the fact that the matrix is not square.
(b1) With reduced row echelon form we find

$$
\left\{[-1,-1,1,0,0]^{T},[-2,2,0,1,0]^{T},[-3,-3,0,0,1]^{T}\right\}
$$

(b2) SIze of basis, 3.
(b3) We use Gram-Schmidt with the basis from d. Note that the first 2 vectors are already orthogonal. Note that the las vector is orthogonal wrt the second vector. We compute:

$$
[-3,-3,0,0,1]^{T}-2[-1,-1,1,0,0]^{T}=[-1,-1,-2,0,1]^{T}
$$

We find an orthogonal basis:

$$
\left\{v_{1}=[-1,-1,1,0,0]^{T}, v_{2}=[-2,2,0,1,0]^{T}, v_{3}=[-1,-1,-2,0,1]^{T}\right\} .
$$

Normalizing gives:

$$
\left\{1 / \sqrt{3}[-1,-1,1,0,0]^{T}, 1 / 3[-2,2,0,1,0]^{T}, 1 / \sqrt{7}[-1,-1,-2,0,1]^{T}\right\}
$$

(b4) We use the orthogonal basis found before (to avoid some denominators). Note that the inner product of v with the last vector in the basis is 0 . We find that the projection is equal to:

$$
\frac{-3}{3} v_{1}+\frac{-4}{9} v_{2}=[1,1,-1,0,0]^{T}-4 / 9[-2,2,0,1,0]^{T}=[17 / 9,1 / 9,-1,-4 / 9,0]^{T}
$$

We compute v minus its projection:
$[2,0,-1,0,0]^{T}-[17 / 9,1 / 9,-1,-4 / 9,0]^{T}=[1 / 9,-1 / 9,0,4 / 9,0]^{T}=1 / 9[1,-1,0,4,0]$.
(b5) The length of the last vector is $1 / 9 \sqrt{18}=\sqrt{2} / 3$.
(c1) First 2 columns, $\left\{[1,2,0]^{T},[-2,1,1]^{T}\right\}$.
(c2) Size of basis in h, 2 .
(c3) Read off : $2[1,2,0]^{T}-2[-2,1,1]^{T}$.
(d1) Compute a basis of $\operatorname{Nul}\left(A^{T}\right)$. Ore more simpler, a null space of

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
-2 & 1 & 1
\end{array}\right]
$$

The reduced row echelon form is:

$$
\left[\begin{array}{ccc}
1 & 0 & -2 / 5 \\
0 & 1 & 1 / 5
\end{array}\right]
$$

A basis for the null space of this matrix is $\left\{[2,-1,5]^{T}\right\}$, and this is also a basis for $\operatorname{Col}(\mathbf{A})^{\perp}$.
(d2) Size of basis, 1.

Exercise 2

(a) $\operatorname{det}\left(C_{a}\right)=a^{2}-a-6=(a+2)(a-3)$. So not invertible if $a=-2$ or $a=3$.
(b) If $a \neq-2,3$, the matrix is invertible and has rank 3 . If $a=-2,3$, the rank is 2 .
(c) The inverse is:

$$
\left[\begin{array}{ccc}
-\frac{3}{2} & 2 & -1 \\
\frac{5}{4} & -\frac{3}{2} & \frac{1}{2} \\
\frac{3}{4} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

(d)

$$
\left[\begin{array}{r}
-2 \\
\frac{3}{2} \\
\frac{3}{2}
\end{array}\right]
$$

(e) More solutions implies not invertible. We check $a=-2$, 3. If $a=-2$, then you see that the equation has multiple solutions if and only if $b=4$. If $a=3$, this happens for $b=-1$.

Exercise 3

(a) Characteristic polynomial is $(1-\lambda)^{2}(6-\lambda)$. Eigenvalues $1,1,6$.
(b) $\lambda=1: \operatorname{Span}\left\{[0,1,0]^{T},[1,0,-1]^{T}\right\}, \lambda 6$ gives $\operatorname{Span}\left\{[0,1,5]^{T}\right\}$.
(c) Yes,

$$
P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & -1 & 5
\end{array}\right]
$$

and

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 6
\end{array}\right]
$$

(d) No, the eigenspaces at 1 and 6 are not orthogonal.

Exercise 4

(a) True. One has $\operatorname{det}\left(A^{42}\right)=\operatorname{det}(A)^{42}$, which is nonzero if and only if $\operatorname{det}(A) \neq 0$. A matrix is invertible if and only if its determinant is nonzero.
(b) False, I_{2} and $2 I_{2}$ have the same reduced row echelon form, I_{2}, but they are not similary because they have different eigenvalues.
(c) True. One has $\left(D D^{T}\right)^{2}=D\left(D^{T} D\right) D^{T}=D I_{n} D^{T}=D D^{T}$.
(d) True. One has

$$
\lambda_{1} \mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=A \mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=A \mathbf{v}_{\mathbf{1}}^{T} \mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}^{T} A^{T} \mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}^{T} A \mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}} \cdot A \mathbf{v}_{\mathbf{2}}=\lambda_{2} \mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}
$$

Since $\lambda_{1} \neq \lambda_{2}$, this gives $\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=0$.
(e) False. If v is an eigenvector with eigenvalue λ, then one finds $\lambda v=A v=\mathbf{A}^{3} v=$ $\lambda^{3} v$. So $\lambda=\lambda^{3}$. Hence $\lambda \neq 2$.
(f) False. Consider for example

$$
G=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], G^{\prime}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

By looking at eigenspaces, one can see that this is not true.

