3A: Extra exercises 3

Remark: the exercise below will be graded carefully. Give explanations and computations.

Exercise 1 (3 points)
Show that there is a unique linear map $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ with

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

and compute the standard matrix A corresponding to this map.
Exercise 2 (7 points)
Let $c \in \mathbf{R}$ and let

$$
A_{c}=\left[\begin{array}{ccc}
2 & 0 & 10 \\
0 & 8+c & -3 \\
0 & 4 & c+1
\end{array}\right]
$$

(a) Find all values of c such that A_{c} is invertible. Make sure that you completely justify your answer (2 points).
(b) Compute the inverse of A_{c} when $c=-3$ (2 points).
(c) For all c such that A_{c} is not invertible, find all solutions of the equation $A_{c} \mathbf{x}=\mathbf{0}$.
(2 points).
(d) Compute A_{c}^{2} when $c=0$. (1 point).

