Intro Linear Algebra 3A: midterm 1
Friday April 272018
There are 6 exercises, worth a total of 40 points.
No calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise 1 (5 pts)
Compute the inverse of

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & -1 \\
1 & 0 & 2
\end{array}\right]
$$

Solution:

$$
\left[\begin{array}{rrr}
2 & -4 & -1 \\
-1 & 3 & 1 \\
-1 & 2 & 1
\end{array}\right]
$$

Exercise $2(10=2+4+2+2 \mathrm{pts})$
Let

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 1 & 2 \\
2 & 2 & 0 & 3 \\
1 & 0 & -1 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
1 \\
2 \\
0 \\
-1
\end{array}\right]
$$

(a) Compute $A \mathbf{u}$.
(b) Compute the reduced row echelon form of the augmented matrix $[A \mid \mathbf{b}]$.
(c) Solve $A \mathbf{x}=\mathbf{b}$ in parametric vector form.
(d) Show that the columns of A are linearly dependent by giving a dependence relation between the columns.

Solution:

(a) $[3,3,0]^{T}$.
(b) $\left[\begin{array}{rrrrr}1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & \frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(c) $[0,1,0,0]^{T}+x_{3}[1,-1,1,0]+x_{4}[-1,-1 / 2,0,1]^{T}$.
(d) For example, column $1-$ column $2+$ column $3=0$.

Exercise 3 ($7=2+3+2 \mathrm{pts})$
Consider the matrix and vector

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 5 & 0 & 6 \\
0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

Let $T_{A}: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ be the linear map which sends \mathbf{x} to $A \mathbf{x}$.
(a) Compute $T_{A}(\mathbf{u})$.
(b) Is T_{A} onto? If no, find a vector which is not in the image of T_{A}.
(c) Is T_{A} one-to-one?

Solution:

(a) $[8,6,8,0]^{T}$.
(b) No, zero row in echelon form, $[0,0,0,1]^{T}$.
(c) No, free variables.

Exercise 4 (4 pts)
Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be the linear map such that

$$
T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right], T\left(\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Compute the standard matrix of T.

Solution:

$$
\left[\begin{array}{lll}
2 & 1 & -1 \\
3 & 1 & -1
\end{array}\right]
$$

Exercise 5 (4 pts)
Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the reflection in the line $x=y$, which is a linear map. Compute the standard matrix of T.

Solution:

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Exercise 6 (10 pts)
True or false? No explanation required. Each question is worth 1 point.
(1) If 2 augmented matrices have the same reduced row echelon form, then the solution sets of the corresponding systems coincide.
(2) There are linear systems which have precisely 3 solutions.
(3) Every matrix has a unique inverse.
(4) If $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3} \in \mathbf{R}^{4}$ are linearly dependent, then $\mathbf{u}_{1}, \mathbf{u}_{2}$ are also linearly dependent.
(5) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ be a map such that $T(\mathbf{0})=\mathbf{0}$. Then T is a linear map.
(6) Let A be an $m \times n$ matrix and let B be an $n \times s$ matrix. Then $B A$ is an $m \times s$ matrix.
(7) If A is an invertible matrix, then $\left(A^{-1}\right)^{3}$ is also invertible.
(8) Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4} \in \mathbf{R}^{5}$. If $\mathbf{x} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$, then $\mathbf{x} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
(9) Let $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{7}$. Then $2 \mathbf{u}, 3 \mathbf{v}, \mathbf{u}+\mathbf{v}$ are linearly dependent.
(10) Let A be an $n \times n$ matrix and let $\mathbf{v} \in \mathbf{R}^{n}$. Then the vectors $\mathbf{v}, A \mathbf{v}, A^{2} \mathbf{v}, \ldots, A^{n} \mathbf{v}$ are linearly dependent.

Solution:

(1) True
(2) False
(3) False
(4) False
(5) False
(6) False
(7) True
(8) False
(9) True
(10) True

