Intro Linear Algebra 3A: final
Monday June 13 2018-2 hours
There are 7 exercises, worth a total of 90 points.
No calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise 1 (8 pts)
Consider the matrix

$$
A=\left[\begin{array}{cc}
0 & -2 \\
1 & 3
\end{array}\right]
$$

Compute A^{2018}. You can leave expressions such as $5 \cdot 3^{2019}$. (Hint: diagonalize A).

Solution:

$$
A^{2018}=\left[\begin{array}{cc}
-2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 2^{2018}
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2-2^{2018} & 2-2^{2019} \\
-1+2^{2018} & -1+2^{2019}
\end{array}\right]
$$

Exercise $2(15=4+4+3+2+2 \mathrm{pts})$
Consider the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
1 & 2 & 3 & 0 \\
1 & 2 & 3 & 0 \\
0 & 0 & 0 & 6
\end{array}\right]
$$

(a) Compute the characteristic polynomial of A and show that the eigenvalues of A are 0 and 6 .
(b) Compute a basis of each eigenspace of A.
(c) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
(d) Is $A+I$ invertible?
(e) Is $A+I$ diagonalizable?

Solution:

(a) $\lambda^{2}(\lambda-6)^{2}$.
(b) E_{0} has basis $\left\{[-2,1,0,0]^{T},[-3,0,1,0]^{T}\right\}$. E_{6} has basis $\left\{[1,1,1,0]^{T},[0,0,0,1]^{T}\right\}$.
(c) Yes, $D=\operatorname{diag}(0,0,6,6)$ and

$$
P=\left[\begin{array}{cccc}
-1 & -3 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(d) Yes, since -1 is not an eigenvalue (you can plug in $\lambda=-1$ in a).
(e) Yes, Same P, but with $D=\operatorname{diag}(1,1,7,7)$.

Exercise 3 ($15=5+5+5 \mathrm{pts})$
Let $\mathbf{u}_{1}=[1,2,1,-1]^{T}$ and $\mathbf{u}_{2}=[-1,3,2,0]^{T}$. Let $H=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\} \subseteq \mathbf{R}^{4}$. Let $\mathbf{y}=[0,2,4,1]^{T}$.
(a) Compute an orthonormal basis of H.
(b) Compute the distance between \mathbf{y} and H.
(c) Find a basis of H^{\perp}.

Solution:

(a) $\left\{1 / \sqrt{7}[1,2,1,-1]^{T}, 1 / \sqrt{7}[-2,1,1,1]^{T}\right\}$.
(b) $\operatorname{Proj}_{H}(\mathbf{y})=[-1,3,2,0]^{T}$ which then gives a distance $\sqrt{7}$.
(c) $\left\{[1,-3,5,0]^{T},[3,1,0,5]^{T}\right\}$.

Exercise $4(18=2+1+4+2+2+2+1+2+2 \mathrm{pts})$
For $x \in \mathbf{R}$ consider the matrix

$$
A_{x}=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & x & 0 \\
x & 2 & 1
\end{array}\right]
$$

(a) Compute $\operatorname{det}\left(A_{x}\right)$.
(b) Show that A_{x} is invertible when $x \neq 0,1$.
(c) Compute A_{x}^{-1} when $x=2$.
(d) Solve the equation $A_{x} \mathbf{x}=[1,1,0]^{T}$ when $x=2$ using your answer in part (c).
(e) Solve the equation $A_{x} \mathbf{x}=[1,1,0]^{T}$ when $x=0$ in parametric vector form.
(f) For which x is $\left\{[1,0,0]^{T},[0,1,0]^{T},[0,0,1]^{T}\right\}$ a basis of the column space of A_{x} ?
(g) Compute the rank of A_{x} for all x.
(h) Compute a basis of the null space of A_{x} when $x=0$ and when $x=1$.
(i) Compute the dimension of the null space of A_{x} for all x.

Solution:

(a) $x(x-1)$.
(b) See a.
(c) $\left[\begin{array}{rrr}-1 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 1 & -1 & 0\end{array}\right]$.
(d) $\left\{[-1,1,0]^{T}\right\}$.
(e) $x_{3}[0,-1 / 2,1]^{T}+[1,0,0]^{T}$.
(f) For $x \neq 0,1$.
(g) If $x \neq 0,1$ it is 3 . For $x=0,1$ it is 2 .
(h) When $x=0,\left\{[0,-1,2]^{T}\right\}$. When $x=1,\left\{[1,-1,1]^{T}\right\}$.
(i) If $x \neq 0,1$, it is 0 . For $x=0,1$ it is 1 .

Exercise $5(8=2+2+2+2$ pts $)$
Let $S: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the reflection in the x-axis. Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation of 180 degrees around the origin (clockwise). You may use that S and T are linear maps.
(a) Find the standard matrix of S.
(b) Find the standard matrix of T.
(c) Find the standard matrix of $S \circ T$.
(d) Give a nice/simple description of the map $S \circ T$.

Solution:

(a) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
(b) $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
(c) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$.
(d) Reflection in y-axis.

Exercise 6 ($6=3+3 \mathrm{pts}$)
Let A be an $n \times n$ matrix such that $A^{2}=A$.
(a) Show that 0,1 are the only possible eigenvalues of A.
(b) Show that any $\mathbf{y} \in \mathbf{R}^{n}$ can be written as $\mathbf{y}=\mathbf{y}_{1}+\mathbf{y}_{2}$ with $\mathbf{y}_{1} \in \operatorname{Nul}(A)$ and $\mathbf{y}_{2} \in \operatorname{Col}(A)$. (Hint: $\left.\mathbf{y}=(\mathbf{y}-A \mathbf{y})+A \mathbf{y}\right)$.

Solution:

(a) One has $A \mathbf{x}=\lambda \mathbf{x}$ for a nonzero \mathbf{x}, then one finds $\lambda \mathbf{x}=A \mathbf{x}=A^{2} \mathbf{x}=\lambda^{2} \mathbf{x}$. This gives $\lambda^{2}=\lambda$.
(b) Set $\mathbf{y}_{1}=\mathbf{y}-A \mathbf{y}$ and $\mathbf{y}_{2}=A \mathbf{y}$.

Exercise 7 (20 pts)
True or false? No explanation needed. Each question is worth 2 points.
(1) Let A be an $n \times n$ matrix. If $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$ are eigenvectors of A, then so is $\mathbf{x}+\mathbf{y}$.
(2) Let U be an orthogonal matrix. Then $\operatorname{det}(U)=1$ or $\operatorname{det}(U)=-1$.
(3) Let $c \in \mathbf{R}$ and let I be the $n \times n$ identity matrix. Then $\operatorname{det}(c I)=c$.
(4) Let A be an $n \times n$ matrix. Then every vector $\mathbf{y} \in \mathbf{R}^{n}$ can be written uniquely as $\mathbf{y}=\mathbf{y}_{1}+\mathbf{y}_{2}$ with $\mathbf{y}_{1} \in \operatorname{Nul}(A)$ and $\mathbf{y}_{2} \in \operatorname{Col}(A)$.
(5) Every square matrix is diagonalizable over the complex numbers.
(6) Let A, B be nonzero $n \times n$ matrices. Then there is an $n \times n$ matrix C with $A=B C$.
(7) Let H be a subspace of \mathbf{R}^{n}. Then H has an orthonormal basis.
(8) Let A be an 5×10 matrix. Then $\operatorname{dim}(\operatorname{Nul}(A)) \geq 4$.
(9) Let $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$. Then $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\| \cdot\|\mathbf{v}\| \cdot \sin \theta$ where θ is the angle between \mathbf{u} and \mathbf{v}.
(10) Let A be an $m \times n$ matrix. Then A has a unique reduced row echelon form.

Solution:

(1) F
(2) T
(3) F
(4) F
(5) F
(6) F
(7) T
(8) T
(9) F
(10) T

