Intro Linear Algebra 3A: final

Monday June 13 2018 - 2 hours

There are 7 exercises, worth a total of 90 points. No calculators allowed. No books or notes allowed. Provide computations and or explanations, unless stated otherwise.

Name:

Student ID:

Exercise 1 (8 pts)

Consider the matrix

$$A = \left[\begin{array}{cc} 0 & -2 \\ 1 & 3 \end{array} \right].$$

Compute A^{2018} . You can leave expressions such as $5 \cdot 3^{2019}$. (Hint: diagonalize A).

Solution:

$$A^{2018} = \begin{bmatrix} -2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2^{2018} \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 - 2^{2018} & 2 - 2^{2019} \\ -1 + 2^{2018} & -1 + 2^{2019} \end{bmatrix}.$$

Exercise 2 (15 = 4 + 4 + 3 + 2 + 2 pts)

Consider the matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right].$$

(a) Compute the characteristic polynomial of A and show that the eigenvalues of A are 0 and 6.

(b) Compute a basis of each eigenspace of A.

(c) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

(d) Is A + I invertible?

(e) Is A + I diagonalizable?

Solution:

(a) $\lambda^2 (\lambda - 6)^2$.

(b) E_0 has basis { $[-2, 1, 0, 0]^T$, $[-3, 0, 1, 0]^T$ }. E_6 has basis { $[1, 1, 1, 0]^T$, $[0, 0, 0, 1]^T$ }.

(c) Yes, D = diag(0, 0, 6, 6) and

$$P = \left[\begin{array}{rrrrr} -1 & -3 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

(d) Yes, since -1 is not an eigenvalue (you can plug in $\lambda = -1$ in a).

(e) Yes, Same P, but with D = diag(1, 1, 7, 7).

Exercise 3 (15 = 5 + 5 + 5 pts)Let $\mathbf{u}_1 = [1, 2, 1, -1]^T$ and $\mathbf{u}_2 = [-1, 3, 2, 0]^T$. Let $H = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\} \subseteq \mathbf{R}^4$. Let $\mathbf{y} = [0, 2, 4, 1]^T$.

(a) Compute an orthonormal basis of H.

- (b) Compute the distance between ${\bf y}$ and H.
- (c) Find a basis of H^{\perp} .

Solution:

(a) $\{1/\sqrt{7}[1,2,1,-1]^T, 1/\sqrt{7}[-2,1,1,1]^T\}$. (b) $\operatorname{Proj}_H(\mathbf{y}) = [-1,3,2,0]^T$ which then gives a distance $\sqrt{7}$. (c) $\{[1,-3,5,0]^T, [3,1,0,5]^T\}$.

Exercise 4 (18 = 2 + 1 + 4 + 2 + 2 + 2 + 1 + 2 + 2 pts)For $x \in \mathbf{R}$ consider the matrix

$$A_x = \begin{bmatrix} 1 & 2 & 1 \\ 1 & x & 0 \\ x & 2 & 1 \end{bmatrix}.$$

- (a) Compute $det(A_x)$.
- (b) Show that A_x is invertible when $x \neq 0, 1$.
- (c) Compute A_x^{-1} when x = 2.

- (c) Compute H_x^- when x = 2. (d) Solve the equation $A_x \mathbf{x} = [1, 1, 0]^T$ when x = 2 using your answer in part (c). (e) Solve the equation $A_x \mathbf{x} = [1, 1, 0]^T$ when x = 0 in parametric vector form. (f) For which x is $\{[1, 0, 0]^T, [0, 1, 0]^T, [0, 0, 1]^T\}$ a basis of the column space of A_x ?
- (g) Compute the rank of A_x for all x.
- (h) Compute a basis of the null space of A_x when x = 0 and when x = 1.
- (i) Compute the dimension of the null space of A_x for all x.

Solution: a) ~(

(a)
$$x(x-1)$$
.
(b) See a.
(c) $\begin{bmatrix} -1 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 1 & -1 & 0 \end{bmatrix}$.
(d) $\{[-1,1,0]^T\}$.
(e) $x_3[0,-1/2,1]^T + [1,0,0]^T$.
(f) For $x \neq 0, 1$.
(g) If $x \neq 0, 1$ it is 3. For $x = 0, 1$ it is 2.
(h) When $x = 0, \{[0,-1,2]^T\}$. When $x = 1, \{[1,-1,1]^T\}$.

(i) If $x \neq 0, 1$, it is 0. For x = 0, 1 it is 1.

Exercise 5 (8 = 2 + 2 + 2 + 2 pts)

Let $S: \mathbf{R}^2 \to \mathbf{R}^2$ be the reflection in the x-axis. Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be the rotation of 180 degrees around the origin (clockwise). You may use that S and T are linear maps.

- (a) Find the standard matrix of S.
- (b) Find the standard matrix of T.
- (c) Find the standard matrix of $S \circ T$.
- (d) Give a nice/simple description of the map $S \circ T$.

Solution: $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
.
(b) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
(c) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.

(d) Reflection in y-axis.

Exercise 6 (6 = 3 + 3 pts)Let A be an $n \times n$ matrix such that $A^2 = A$. (a) Show that 0, 1 are the only possible eigenvalues of A. (b) Show that any $\mathbf{y} \in \mathbf{R}^n$ can be written as $\mathbf{y} = \mathbf{y}_1 + \mathbf{y}_2$ with $\mathbf{y}_1 \in \text{Nul}(A)$ and $\mathbf{y}_2 \in \operatorname{Col}(A)$. (Hint: $\mathbf{y} = (\mathbf{y} - A\mathbf{y}) + A\mathbf{y}$).

Solution:

(a) One has $A\mathbf{x} = \lambda \mathbf{x}$ for a nonzero \mathbf{x} , then one finds $\lambda \mathbf{x} = A\mathbf{x} = A^2\mathbf{x} = \lambda^2\mathbf{x}$. This gives $\lambda^2 = \lambda$.

(b) Set $\mathbf{y}_1 = \mathbf{y} - A\mathbf{y}$ and $\mathbf{y}_2 = A\mathbf{y}$.

Exercise 7 (20 pts)

True or false? No explanation needed. Each question is worth 2 points.

(1) Let A be an $n \times n$ matrix. If $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$ are eigenvectors of A, then so is $\mathbf{x} + \mathbf{y}$.

(2) Let U be an orthogonal matrix. Then det(U) = 1 or det(U) = -1.

(3) Let $c \in \mathbf{R}$ and let I be the $n \times n$ identity matrix. Then $\det(cI) = c$.

(4) Let A be an $n \times n$ matrix. Then every vector $\mathbf{y} \in \mathbf{R}^n$ can be written uniquely as $\mathbf{y} = \mathbf{y}_1 + \mathbf{y}_2$ with $\mathbf{y}_1 \in \text{Nul}(A)$ and $\mathbf{y}_2 \in \text{Col}(A)$.

(5) Every square matrix is diagonalizable over the complex numbers.

(6) Let A, B be nonzero $n \times n$ matrices. Then there is an $n \times n$ matrix C with A = BC.

(7) Let H be a subspace of \mathbb{R}^n . Then H has an orthonormal basis.

(8) Let A be an 5×10 matrix. Then dim $(Nul(A)) \ge 4$.

(9) Let $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$. Then $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cdot \sin \theta$ where θ is the angle between \mathbf{u} and \mathbf{v} .

(10) Let A be an $m \times n$ matrix. Then A has a unique reduced row echelon form.

Solution:

- (1) F
- (2) T
- (3) F
- (4) F
- (5) F
- (6) F
- (7) T
- (8) T
- (9) F
- (10) T