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REMARKS ON REFLECTION PRINCIPLES,
LARGE CARDINALS, AND ELEMENTARY
EMBEDDINGS'

W. N. REINHARDT

This paper is mtended as a brief introduction to recent work directed at the
formulation of new axsoms of infinaty or large cardinal properties. [t s intended to
be as froe from technicalities as possible, and aspires to explain the motivating
wleas as clearly and fully as possible, with attention to the problems, puzzles, and
intuitions that ke behind them. We include some comments oa developments since
the 1967 symposum.

A paper to be titled Strong axioms of infinity and elementary embeddings is in
preparation with R. M, Solovay, and has been owed for some time now. The present
paper may serve as a first installment on this debt. (Solovay s not, however, to
be blamed for any deficiencies or excesses of this exposition.) The full payment
will include a more complete discussion of the relation between large cardinal-
embedding conditions and wltrafilier-measure conditions, and also of the known
consequences of axioms we have considered.
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1. Reflection principles.

L.1. Paradoxes in logic, Cantor's {2 and reflection principles. It has been pointed
out that the paradoxes of Russell, Burali-Forti mever really caused a crisis in
mathematics (where one deals only with unproblematic examples of sets), but
rather in logic (and general set theory) where one attempts 10 provide a gencral
and universal framework for mathemsatics and in particular for arbatrary sets.
We now consider such a frame 1o have been provided for set theory by the darifica-
tion of the intuitive idea of the cumulative hicrarchy (due chiefly to Zermelo)
(e, the sets in the series R, R,,... given by R, , = @R, carried into the
transfinite for arbitrary ordinals = by the rule R, = (), R, in case 1 is a limit
ordinal; bere PX « {ft © X}) We might say that this reduces all structural
questions to questions about “arbitrary subset of” and “arbutrary ordmal™
{The apparent restriction on universality arising from sets whose clements are
not sets and “irregular™ sets is not believed to be significant for the expressive
power of the framework. The reason is that every set X is supposed to be equive
alent to an ordinal, and since we are concerned only with structural questions
{u.wtomm)ntmlommmmmlmsn
independent of the possible interpeetational or epistemic interest of such sets)
The picture provided suffices 1o set up the basic axioms of set theory. [t rather
explicitly refrains from a definite division of “ordinals™ from other existing objects,
and, in fact, does not tell us much about the transfinite sequence of ordinals €2
(which Cantor conceived as “absolutely mfinne”) Insofar a5 we know anything
more about this, our knowledge seems to depend on so-called reflection principles.
There are concrete examples here which seem quite unproblematic. (Exactly what
is included is perhaps debatable, but we would certainly include inaccessible
cardinals, Mahlo cardinals, and indescribable cardmals. If our analysas is correct,
then measurable, supercompact, and extendable cardinals are 1o be included, as
well as Vopénka's principle. The latter however requires a further dévelopment
than that given here.) The difficultics anse in formulating a general principle. For
example, analogous 10 the “ideal”™ comprehension principle of naive logic, we
bave the naive reflection principle
If €2 bas any property P then there is an ordinal x < Q which also has
the property P.

If we consider the property P(x) = x = £}, we see that something more subtle is
required. However, this form brings out two aspects of reflection principles clearly.
There is (1) some consideratson of (“reflection on™) the universe of all sets or on
and ns propertics, and (i1) there is clammed to exist an object (here, a set x) which
mirrors (“'reflects™) this universe. The difficulties lie in assigning suitable meanings
to "0 has P (which generally seems to involve consaderation of objects which are
not sets) while preserving in some way the universality of set theory.

1.2. Examples of reflection arguments. It may be belplul to give some informal
arguments illustrating the use of reflection pranciples.

The simplest is perbaps: the universe of sets is maccessable (1e., satisfies the
replacement axiom), therefore there is an imaccessible cardinal. This can be
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claborated somewhat, as follows. Let 6, enumerate the maccessible cardinals. By
the same sort of reasoning, @, is not bounded ; the Cantor absolute £ (all ordinals)
is an inacoessible above any proposed bound §, therefore there is an inaccessible
cardinal above . Clearly, then, there are £ inaccessibles below € thergfore there
15 an inaccessible x such that there are x inaccessibles below it (e, x = @) Now
suppose that F is a set function F = €2 — (2 such that it is pondecreasing and
continuous (i.c., at limits FA = |_J [Fda < i}) Now it is natural to think of FQ as
makmng sense (we can “'define™ it by the continuity condition) in which case it is
clear that FQ = © Thus 0 is an inaccessible fixed point of F, If we allow reflection
on rthis statement, we get that F has an inaccessible fixed point, Notice that we
could have thought of the argument above for x samilarly: 6, = Q - (&
< Q8 - x

We give one more example. A tree 15 & partial ordering in which each instial
segment is well-ordered. The rank of x is the order type of {My < x}. Let T be any
tree structure on Q such that (1) for each 2 < Q the points of Tof rank < 2 form a
set (rather than a proper class), and (1) T has points of arbetrarily high rank. We
argue that Tmust have a branch of length Q. First choose F, to be the tree obtained
from T by koeping only points of rank < a. Now F_is a set, and, fora < B, F, is
an ¢nd extension of F,. For limits 4, F, = (J{F,Jz < 2}. Notice that each F,
has a branch of kength x (since F, ., ~ F, # 0L Now let us apply F formally to £
Then formally we expect F, 1o have a branch of length Q0 And, indeed, if we
suppose Fp does nor have such a beanch, and apply reflection, we get a coatra-
diction. Finally, F, = \_ (F,lx < Q] =« T, so T has such a branch

At this point we can say that our method of making such informal arguments
precise is (1) 1o make peecise the sense in which a function F Q) — £2 can be applied
to £, and (M) 1o make precise the statements about F for which reflection is allowed,

L3, An imprecise remark. It is possible to give a metaphysical motivation for
the form of (P1) along Cantorian lines. We present this in the hope that some
readers will find it illuminating According to Cantor, £2 is unlimited.” To the extent
that our thanking is limited, then, it should be compatible with what we think or
understand (about Q for example) that the same could be thought or under-
stood of some x < 2 Thus we do not understand (in the requisite sense) the
property Plx) ++x = )

A similar doctrine can be formulated about the totality of all things which
exast : whatever theory we have about what exists, it should be compatible with our
understanding of our theory that the totality of existing things should be a set.
This places a restriction on the expressive power of “understandable™ languages.
(In the case of purc-unapplied-first-order Jogic, the doctrine is proved by the
Lawenheim-Skolem theorem )

2. Qfrom outside. As a first attempt at understanding the mechanacs of reflection
arguments, let us imagine for a moment that we could get outside of Cantor’s

* Moce peeatsely, Cantor converved of the provess of formenion of the oodinals s “sboshur grenseeion™
(detter 1o Dodekind) Castor sharad with claasical Geooce & certien distaste Soc the #xzipor (mbounded,
indeterminale), uader which he claawiod the potential infinite.
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universe V = R, and think of (“reflect 0on™') ¥ as if it were a set. Then there would
be objects (such as Q, Q + 1, R, o) of rank 2 Q0 This of course already violates
part of our imturtion about €1, namely, that it is all possible ordmals (or well-
order types) but aside from this there seems nothing incomsistent in such an
imaginative foray. It may be compared to the “virtual displacements™ which play a
role m the extremum perinciples of physics. Formally, it is very easy to implement
(the difficultics come in interpreting the formalsm). We add to the lsnguage of ZF
individual constants V, 0 together with the usual axioms relativized to V. Also we
add an axiom asserting that ¥ = R, (This last assures that for x & ¥, #x contains
all possable subsets of x.) The question arises : What theory do we assume in dealing
with the new objects we have projected? Now Cantor’s universe V is mtended to
comprebend all possibilities as regards well-ordermngs: so it s natural (o suppose
that the theory of R, would be applicable in our projected situation. If we allow
the complete theory (sets as parameters) we obtain by this analogical procedure
the schema

(S2) (Vx, y € V)[67(x, y) == &x, y)).

(Here @ 1s any e-formula whose free variables are x, y, and 6% is obtained from 8 by
relativizing all quantifiers to V. Syntactically, ¥V is an individual constant.) The
schema simply asserts that any fiest-order sentence 8 of the theory of Ry, is troe
in the projected universe.

2.1. Reflection arguments from the projection schema. We mdicate how (S2)
msay be used to formalize reflection principle arguments. Now the formula of set
theory which cxpresses “x is inaccessible” can be formally applied to V. In this
sense we can, within this formalism, assert that V is inacoessible (which of course is
not expressible by a first-order formula of the language of ZF when the quantifiers
range over V). Let us add the axiom "V is inaccessible™ to our formalism. It
now passible, in those cases where the set function F is defimable, to carry out the
informal arguments given earlicr. Utilizing informal criteria to judge when the
passage from “Yor all definable F™ to “Yor all F™ is acceptable, one can in this way
obtain all the Mahlo cardinals. (The informal step 18 in cach case analogous to the
passage from "V satisfics replacement for defimable functions™ 1o “¥ is macces-
sible.”) For details, see Lévy [L1) [L2). The schema (S2) can be used 1o provide an
clegant axiomatization of set theory. The resulting theory, which we will call ZA
(because of the similarity to Ackermann’s set theory [Al]) is equivalent to ZF
4+ (S2) + V= Ry, and its e-part is ZF. (See [R1), (R3], [L1})

3. The haaguage of ZF vs. language with (): a digression on theorles, methods
of extending theories, and properties of natural models. The reader has probably
noticed that the schema (S2) corresponds to the following relation Eix:A) on
ordinals,

Duravmion 3.1 Let x, 2 be ordinals, We write E(x; 2), and say that x is first-
order extendible to 4, in case

(1) (R..&)<(R,, e)&x < i
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Why not dispense with formalisms involving noasets (or “imagined but nonexist-
ing" sets) and discuss properties of sets like the above? This is wsually desirable
(especially for convenience in precise formulation), but our concern here is with
motivation and evidence, which, like it or not, seem 1o depend on coasideration
of 2 Morecover, the schema (S2) is supposed to assert something about correct
theories of sets and correct methods of extending such theories, which is not
contained for example in the bare assertion that there are x, A such that Elx; A)
We stop here to discuss this because it belps explain the role that £ plays in building
set theories.

In devising set theories we are interested in

(a) theores T which are correct on the intended interpretation,

(b) procedures T -« T° which always lead from correct theores to correct
theories.

Now “correctness of T on the intended interpeetation™ is supposed to be
expressible in the language of (S2); that is what Q or ¥ is for. Thus, letting W T, V)
be a formula expressang “T is true in V" whenever

(al) ZA — 9T, V),

(b1) ZA — VYTIWT, V) =« T, V)],

(where Toe T is a function expressible in ZF) then we have corresponding prin-
aples of type (a), (b) above. Thus uses of ZA to get either type of assertion are seen
1o be special cases of

(ZA = (V)] = (V)

which is just the “proof theoretic reflection principle™ for ZA (written in a sloppy
manner, however). Notice that common methods of extending theories are con-
txined in this; for example T T + “Tis consastent,™ T T + “T has a natural
model,” ctc,”

1. Large cardinal properties. Within the language of ZA we can also say (for a
single g-formula @) what it means for ¢ 1o expeess a large cardinal property. It
means that ¢{f)). Now one can obtain principles of types (a), (b) from a large
cardinal property and a given correct theory of sets (such as ZF) as follows. If
@ 18 a large cardinal property

(a2) ZF  Vitplx)= ¢(T, R ),

(b2) ZF - Viiglx) = YTIUT, R ) - ¢(T", RJ]\
then we have the corresponding principles of type (a), (b) above. (Again, $(T, X)
cxpresses T is true in X.")

Thus in giving & model theoretic condition (instead of a formal theory) one
must specfy what is intended as the large cardinal, For example, in (3.1), x is

? The comnettion between such reflection principles and set thooeetic reflection principles doss net
seem (0 me %0 be merely verbal Here one conuders what is true, and this is mirrored by what is prov-
able. There b also the dement of ostensible reflecivity: one's consideratons are teraed back upon
Berrmiclives (e g 0fe Lries 1o Be comcious of the formal xysiem cne is using) 11 seersa, however, that they
always fall back %0 something loss Ban themseives. This clement also occurs is set theoretic refloction
prmcipies, but the ostensbie reflevity s moee catologscal | we reflect on the (mathematical) exintence
of that whick we comider, a3 we cossider mathemationl evilence




194 W. N. REINMARDYT

intended as the large cardinal. Since in (S2) we consider not only statements of
the form y(7, ¥) (T s correct) but also (V) (¢ 15 a large cardinal property), we get
from a condition such as (3.1) (and a correct theory such as ZF) versions of (a), (b)
for karge cardinal properties. Let fx, A) formakize (3.1). If

(a3) ZF »- ax.n~o§'(xb.

(63) ZF v &x, ) A 9*4x) — $"4x),
then @, is a large cardinal property and ¢~ @ is an operation which preserves
large cardinal properties.

32, Formal comsistemcy. One further pommt can be made here. The theory
ZA (ZF 4 (S2) + V = R,) 18 provably consistent refative to ZF (see Lévy [(L1))
But the proof of this does mot appear 10 provide an interpretation of ZA which
gives 0 the role which we are suggesing here. In fact, the formal consistency of ZA
merely asserts the existence of models 9, 8 such that U < B, etc., and is thus not
as strong as 3x, AE(x, A\ which we have already observed does not capture the
role of 2.4

4. Bernays' reflection principle using classes. The rather formalistic approach
via (S2) which we have taken to reflection principles has the advantage that (osten-
sably at least) we are never required to accept the existence of objects other than
sets, or of relations other than €. Everything else is merely a formal device. The
appropriatencss of the device must be judged informally, In its defense it may be
pointed out that, assuming we want to think of V at all, the analogical procedure
(think about it as you would think aboul anything clse) seems to have an edge
until either (a) # runs into trouble or proves fruitless or (b) some informal con-
siderations suggest an alternative to classical logic or classical set theory whach
has some chance of proving fruitful in this context.

One disadvantage is that we would like a better account of the passage from “all
definable F* 10 “all F."' Allowing proper classes to exast would seem to be a fair
price to pay for this, especially since proper classes scem needed anyway just to
express the properties we are concerned with (such as inaccessibility). We therefore
consider means of expressing reflection principles in the language of class-set
theory (GB or KM) (Since we now have objects which are not sets, the universality
of set theory is threstened. We shall return to this point.)

* Scene further remarks may belp clacify the situation. If N is & mode of G, thee (#¥ 2" or ¥ for
short, # a model of ZF. Simbarly for ZA. M C s » clas of models of the laaguage foe ZF,
wiite T a M YNIN = T& VNC « V¥ 1= o) Since any modsl M of ZF o be extendad 10 2 modd
N of GB baving the same sets, for all C wg have ZF ~ . o il GBI -, o, 3nd we may regasd 2F and G s
omentally the sume theory of sets. The oew objecs of GB can be regarded as a mere facon de parfer, (OF
Counse, one Beod not 50 fegasd them, aad indeod Gida did ot regard thees ths way in his ssosograpd
introdecieg L ; bet ths m bexide the point ) Although aay model M of ZF gives rise via Lévy's proof 1o a
model N* of ZA, N* & not in peneral an extension of M haviag the same sets (M and (V*.¢*) need
Dot be Isomanphicl Thus ¥ does not capluee the solion of set of e original interpretation M asd thus
does not play the role we desire. In fact, the equivalonce ZF » . o il ZA .« fals # C is the chass of
natursl models B (ZA s e strongsr theory berel Nevertheloss, Lévy's peoal shows that ZF » o if
ZA v 0" Wl ZA v 0,50 et (i & weaker seese than for GB) ZA and ZF are csentially the same theary,
and in this weaker serse the “unaginary ™ objects can de regarded as a fecon de povier.
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Let us suppose that x < Q s going to reflect . Then sets correspond to elements
of R_, and proper classes 1o subsets of R, . Thus if we wish to allow proper classes
F & R, as parameters in reflectable statements, it is quite natural to suppose that
what is tree of F will be true of F ~ R, in the reflecting universe. This suggests
the schema

(S3) &F, G) — (3 < " {FAR,GR)

(since statements  are really of the form 8%+ in class-set theory). Note that this
is chose to the form of (P1)

4.1, An imterpretation eliminating imaginary sets in favor of sets. Using (S3)
one can immediately give an interpretation of (S2) which is closer 1o (P1) Let F
be (or code) the Skolem functions for Ry,. Then there is a @ which says R, s closed
under the Skolem functions. Thus choosing x for this 8, R is closed also, ie.,

(4.1) R, <R,.

(Evidently one can conjoin other properties of 2 with ¢ before using (S3) to get
x. Those familiar with KM will note that it will suffice to get the unembellished
(4.1)) Now take the quantifiers of (S2) 1o range over Ry, and take ¥ to be R,.
Note that in this interpretation no quantificrs go outside R,,. However, the defini-
thon or proof of existence of x appears to require going beyond R,

42 Eliminating imaginary sets in favor of classes. Still another interpretation
of (S2) exists on the basis of (S3). We can show, in effect, that there is a transitive
“set™ M such that

4.2) (Rg.€) < (M, el

Actually we can only get M up to somorphism; the exact statement is: There
cxists & well-founded relation E < R, (say with field M), a point @t in M, and an
isomorphism J such that

(Ry.€) =, (RN, E) < (M, E)

The proof (by contradiction) is easy, I it fails, choase an inaccessible x reflecting
the statement that it fails, and such that B, < R,,. By the downward Lowenheim-
Skolem theorem, there is a transitive set M of cardinality x such that R, < M,
a contradiction.

We remark that these interpretatons are in a sense nonstandard : In the first,
the “large cardinal™ x may not have all large cardinal properties it should; i
the second the properties of 2 may pot relativize properly to M. However, in
either case the interpretation is adequate for expressing first-order propertics of Ry,

43, Reflection arguments wsing Bernays® schema Using (S3), it is possible to
carry out all the informal arguments given earlicr (and even prove the replacement
axiom) For details see Bernays [B1), where (53) is introduced as the basis of a
very elegant axiomatization of class-set theory. (By taking care in the relativization
of equality, Bernays even avosds the necessity of relativizing the parameters F o
FnR,)
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S, Imaginary sets and classes; the set-class distinction. We may regard Bernays'
schema as a reflection principle for second-order logxc over set theory. There are
obvious gencralizations 10 higher orders; these are the so-called indescribability
conditions. (Bernays' schema asserts that © s second-order indescribable. The
notion of indescribability is discussed in Lévy [L3)) Passing to higher types gives
stronger axioms. None of these generalizations, however, allows objects of type
higher than classes of sets as parameters in the reflected statements. Since it is the
presence of the classes as parameters in Bernays' schema which appears 1o be
responsible for its great strength, we would eventually like to continue by formulat-
ing a third-order reflection principle which allows third-order objects as param.
eters. It does nol appear to be possible to generalize (S3) in this direction very
directly. (The reader who does not believe this is welcome to try.) We therefore
return 1o the considerations that led 1o (S2), and ask whether we can formulate a
version of (S2) appropriate to class-set theory.

5.1. The set-class distinction; a projection schema. In class-set theory we have
classes as distinct from sets ; but if we concerve of them merely as collections, thas
looks like a distinction without a difference. In particular, we seem to have nothing
not contained already in (S2) plus 'V is inaccessible.”” Moreover, the classes threaten
the universality of set theory. (This perhaps is why many mathematicians find ZF
far more natural than KM ; our idea of set comes from the cumulative haerarchy,
s0 if you are going to add a layer at the top it looks like you just forgot to finish the
hicrarchy.) A proper class P may however be distinguished from 2 set x in the
following way (if the reader will indulge another counterfactual conditional): If
there were more ordmals (or if, as in (S2), 2 were an ordinal), x would have exactly
the same members, whereas P would necessanly have new clements. We could
say that the extension of x is fixed but that of P depends on what sets exist. Roughly,
x is is extension, whereas P has more to #t than that.® Notice that in (S2) the defin-
able propertics behave in just this way; the extension of 0 is P = [xs Vil(x)},
whercas in the projected universe it becomes {x¥(x)}. (Thus & determines a set
Just in case the two are the same—which agrees with the “'size" criterion which s
frequently used to motivate the axioms of ZF.) This tells us how to formulate the
analogue of (S2)for class-set theory : Write jP for the extension of P in the formally
projected universe ; then the schema we want 15

(S4) (Vx,y€ V)(VP < V)[§7"(x, y, P) o= B x, y. jP)).

Symtactically j is & unary function symbol, We allow it in the comprehension
principle appropriate to class-sct theory :
LVirezes 0 A Ddtew)

Otherwise (S4) is just like (S2) (x, ¥, P exhaust the frec vaniables of 6 V 15 a new
individual coestant; " indicates relativization of all quantifiers to “x & V™';
we suppose the usual axioms for ¥ and that ¥ has the form R,,.)

' We could say that P contains the famous three 8003 or "ot ™ of mathematics in an essential way.
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Note that if xe ¥, also x € V, 50 that x = x++ x = jx i$ an instance of (S4)
Thas assures that j is the identsty on V.

In (S2), the original universe V consists of sets; in the formal projection we treat
¥V as a set, thus projecting new sets. In (S4), the original universe consists of sets
and classes of scts. In the formal projection we introduce new sets and classes of
these as well ; among these are the jP,

Schema (S4) asserts that sentences of the theory of sets, allowing quantifiers
over classes, and both sets and classes as parameters, are true in the projected
universe when the class parameter X is given its proper extension JX.

5.2. Model theoretic version. The model theoretic condition correspondng to
(S4) is E'(x: A):

Dernamion $,1. We write E'(x; 4) and say that x s second-order extendible to 4
in case

x<iand M, j:R_,, - M < R, such that

(5.1) (1) (M, &) <(R,,,.€L

(i) forall xe R, jx = x.
Evidently fx = A; we call x the critical point of the embedding j (since it s the
first posnt moved by j) 1t is x which is intended as the large cardmal. In the sequel
we write (5.1) in the more abbreviated form

I:R-OI = <Rn|o

understandmg that x is the critical point (and hence x < AL

Note that this condition can also be expressed by saying that the com-
plete theory of the structure (R, ., € X X)n, xer.., D25 an interpretation
‘R‘¢|u“&x',m‘....in‘tkhl’h.”(l'<zl

$3. Universality of set theory: applicability to classes. In conceiving classes
P < V we must decide whether their extenssons are 10 be treated in a perfectly
classical way, or not; whether, for example, the axiom of choice is to hold, If set
theory is as umiversal as we mtend, it should be applicable to any collections,
including these. We note that (S4) decides strongly in favor of such a classical
treatment. The reason for thas is that while classes P © V are treated a8 having
“potential extensions™ jP, they (or, if you prefer, their extensions) are simulta-
neously treated formally as sets, In the formally projcted universe, Vis a set, so
we have in effect identified projected subsets of V with the extensions of our proper
classes. Since the theory of V 1s supposed to apply in the progected universe,
V = Rgand Ry, , are treated classscally. In this way we mitigate the threat to the
universality of set theory which is pased by the introduction of proper classes.

54. Virtwes of the class-set projection schema, So far we have introduced (S4)
only a5 a formal device. (We prefer to give it some interpeetation. In the sequel
we will suggest, for example, interpretations analogous to the interpretatsons (4.1),
(4.2) which Bernays' schema (S3) provides for the first-order case (S2).) As such it
has some noteworthy virtues, (1) It works extremely smoothly i formalizing the
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carlier informal arguments (it is only necessary to read ( JF)) for FQL (1i) Bernays'
schema (S3) follows easily from it (izi) As we shall see, it 1s very casy to generalize
it 10 allow higher-order parameters. (iv) It allows us to make an mtelhigible con-
ceptual distinction berween sets and proper classes.

5.5, References. The copdition (S4) (or its model theoretic version) was first
formulated by Silver following a suggestion of Reanbardt. It is closely related to the
set theory of Ackermann, to informal deas of Shoenfickd, and 1o 2 set theory of
Powell (for details, see Jech-Powell [J1), Reinhardt [R1), and Shoenficld [S1,
p. 28]\ The condition was used by Silver [S2] in his proofl of the relative con-
ssstency of “2° # x* and x measurable.”

56, Free Msorical remark. Formal devices such as j and the idea of analogical
predication are hardly new to the history of thought. The author recently stumbled
on an carly use of a Jdike device by the writer known a3 Pseudo-Dioaysius (fifth
century(?)); Greek scholars can probably find carlier antecedents. According to the
“negative way"” of Proclus as followed by Pseudo-Dionysius, created beings are
(for example) wise of unwise (as the case may bel but the Creator is neather; he s
superwise. According to (S4), of course, ordinals are accessible o¢ not as the case
myb;:.butﬂis}(mmsibkl&e(iowlalon [C1, pp. 51-52; also compare pp,
61-62].

6. Higher type objects ({2-classes); represeating imaginary sets and chasses using
classes (2 «classes). We wish 10 indicate how (54) may be interpreted, The chiel
difficulty here is explaming what kind of object the quantifiers range over. Before
assuming there are objects satisfying the axsoms we would like at least to know
what sort of things they are going to be. Of course we can suppose there s & set
which is a2 model, but this defeats the intention that the R, part of the theory really
applies to Cantor's universe and that proper classes are really classes of sets.
On the other hand, if we introduce mew objects (even proper classes) beyond
Cantor's universe this violates the universality of the concept of set. We propose to
mitigate this sorrow by secing the universality not in the extension of the concept
of set but in the applicability of the theory of sets. (We have already seen how this
works in the case of classes in observing how (S4) treats classes classically.)

6.1. Q-classes. The simplest way to proceed is perhaps the following. We have
now introduced proper classes of sets as distinct from sets. (To be sure, the distine-
tion s drawn only by considermng “imaginary "' sets and classes.) In a similar way
we can conssder classes of proper classes, classes of these, etc. We call these -
classes, since they are budlt up over £ The manner in which proper classes are not
“purely extensional™ is indicated by (S4). In an analogous manner, the (-classes
are conceived as “pooexicnssonal”; this will be spelled out below. They may,
however, also be considered purely extensionally® Since we regard set theory
(the theory of 0) as the theory of extensional objects such as sets, collections, ¢tc.,

* That ia, without projecting any imaginary universs. The essencial aonexteasionality appears caly
when thes & dooe.
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we assume this theory applies to (-classes. This is expressed by the schema (S2)
whach we adopt explscatly here.

AxioMm 6.1. We adopr the schema (S2) interpreting VX" as “for all Q-classes x.”
Q as the Cantor series of ordinals, and V" as R,,.

Of course, this assumption gives us an enormously rich supply of -classes.

In order 10 express the distnctive charactersstics of -classes we could now
introduce imaginary sets and imaginary £-classes. However, we wish 10 avoid as
much as possible an unending series of extensions of the types of objects allowed
in our theornes (especaally “mmagmary” objects) Therefore we shall use the -
classes we already have, making free use of the natural models R, (QQ < f) which
are available, to represent imaginary objects and 10 explain the special axioms for
Q-classes. Thus while our set-class distinction does presuppose the idea of a set-
possible set distinction, we do avoid the introduction of possible sets. Thas still
makes liberal use of ()classes, so we shall examine how many are needed for
certain purposes ; but at first we ignore such niceties,

6.2. The special axiom for Q-classes, Let 4 > €2 50 that K, 15 a collection of £)-
classes. We wish to consider a realm R, of imaginary scts, and a corresponding
realm R, of mnagmary (classes, in which € is an imaginary set. Moreover we
want classes of sets to correspond to classes of imaginary sets, and other Q-classes
x 10 correspond appropesately 1o other imaginary classes jx m such a way that the
theory is prescrved, In the case 4 = €2 4+ 1, this preservation &8 expressed by the
satisfaction of (S4); in model theoretic terms for R, R, R, this says that there
exists j: R, - R,., such that

) (D<= <,

() Vx <€ jx = x,
i) M = {jxixe R}, (M, e) < (R,.5)

In addition, in the case 4 = 2 + | we automatically have

(6b) (iv) 4 < €
which, of course, says that the -classes considered are in the realm of imaginary
sets, I8 (6) which we use 10 indicate the special character of the )-classes.

We put these conditions in a formal definition.

Durnamion 6.2. Let 2, 4 €, 2’ be ordanals, j a function j: R, - R,..

() We write j:E L A €Y 1) in case i > 0 and the conditions (6aNi)-{in)
above are satisfied. We call 02 the critical point of the embedding /. In case the
condition (6bMiv) above is also satisfied, we write /- EIQ, 4.0, ).

() If there is such a j we write simply EJQ, 4. €Y, 2) or E(Q, 4; 9, 1) and say
that 0 is A-extendible (to £X).

{c) Wesay that £ is extendible if it 1 A-extendible for every 4 > (L

We make explicit our special assumption about )-classes,

Axiom 6.3, For every Q-class 1 which is formally an ordingl, 2 &s J-extendible.

Several comments are noeded about (6). (2) Although it s obvious, we note that
it is 0 that is the large cardinal here and not 4. Of course if one thinks of R, as all
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Q-classes, or all existing classes, or the like, it scems reasonable to cxpect that
properties which hold of 2 will be large cardinal properties ; but this does require
an additional conceptual step. (b) The condition (i) says that €2 is an imaginary
set, of 1s imagined as a set, (i) that sets are allowed a5 parameters without applica-
tion of J (as in schemas (S2) and (S4)), and (in) that truth is preserved in the
projected universe. The condition (iv) does not seem implicit in the idea of project-
ing imagnary sets and (classes. Howover, if we want to treat not only £ but also
the Q-classes in R, as sets, it is clearly necessary that 2 S ¥, Thus by taking an £
ford + lwepgetd < 2 4 1 540, 50 that (iv) is also seen to be a matural condition
here,

63. Q-classes = possible ()-classes? Having introduced ()-classes, we may ask
wixther it makes sense (o consider all possible f)-classes. Since we already have
s0 much difficulty with all possible sets, one may expect at least analogous difficul-
ties here, However, if we do think of J as representing all possible Q-classes, it scems
fairly clear that 2 = A" (As A’ cannot be smaller than 4, it has mowhere else to go
if A is all possible Q-classes. In other words A remains the same in the imagnative
projection while £2 changes to £2) Thas i clearly mncompatible with (iv) as we surely
musthave Y < 1'(0 < x < Athercfore ¥ = M) < jx < 2); but we observed that
() did not seem forced by our guiding idea. If we now retain the conditions (6a),
we are led to the conclusson that (R, €) has a proper elementary embedding into
itsell, In 1967 it secmed plausible 1o the suthor that such an absolute treatment of 4
should be possible, and hence that there should be imaccessible cardinals 4 of
this sort. Such an axiom was proposed in the author’s thesas [R2]. This however
was a mistake : Kunen has proved (using the axiom of choice) that any such ordinal
A must either be of the form S or # + | where § has cofinality @ [K1). Whether the
cofinality condition is necessary and whether the AC is incssential oc alternatively
the condition provides an interesting way of violating AC (as with the axiom of
determinatencss) remain open problems.

The above line of thought which suggests a proper clementary embedding of R,
into iself can be set in a slightly different context. There is a natural tesdency to
ey 1o keep everything within the realm of sets, and to regard all talk of 0 as
actually about an ordinal x which reflects Q2 to a suitable degree. (We of course
have opted to allow {)-classes and to secure the universality of set theory in another
way.} If one does this it is natural to consader x which are i-extendible for every
ordinal 4. But in this context (keoping everything within the realm of sets), the
next step, namely x which are co-extendible (meaning one j which works for all A)
is just like setting Q-classes = imaginary Q-classes above and yiclds a proper
clementary embedding of the universe of scts into itself. Thas was the approach of
[R2], where it was insisted that the contemplation of alternatives to the actual
universe of sets (here accomplished by the distinction set-imaginary set, and repee-
sented using 0-classes) be in terms of repeesentations of V which are sets,

64, An alternative motivation, There is an alternative motivation for clementary
embedding conditions which may also suggest considering the condition V 5 <V
(proper). It is well known (from Scott [S3]) that if x is & measurable cardinal, then
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there is an elementary embedding j of the universe of regular scts ¥ into a well-
founded class of sets M, with x the first ordinal moved by j. Moreover, as stronger
cosure conditions are imposed on M (M closed under sequences of length 2%,
2%, etc), the assertions become arithmetically stronger (actually, x increases in
size). This suggests vanous clementary embedding conditions including V & < V.

While this line of thought s motivated by the desire for stronger assertions
and by a natural generalization, and does motivate some of the conditions we
introduced carlier, it is not the original motivation, (Kunen [K1] presents it in
such a way that the reader might thank it was.) Rather, it is very close to the motiva-
tion for considering irreducible covers (see § 7). Morcover as this presupposes
the idea of a measure, and does not seem 1o have much direct coanection with the
idea of reflection or other basic ideas, it seems to bave quite different foundational
relevance than the approach of 62,63,

6.5. A priori possibilities for Q-classes. H R, are Q-classes, and (¥, R,. represent
respectively the imagmary ordinals and the imaginary ()-classes corresponding
o R,, then there are four a prion possibilities for the order relations among
QAL AV CharlyQ < < i, and Q < 4 £ 4. Thus the possabilities are given
by the pacement of LA < QA = X ¥ < L < X', and 2 = 4" The first and last
have been considered above. We note here the four conditions are of increasing
strength.

THeoxeM 6.4, Let Q2 A4, ... be any ordinals. The conditions

(1) j-Eff A Y. Z) & Ay = .

(i) i EMQ A, 0, L) & < 4, < 4,

(1) JIESOL A MY, A& A, =0,
are of decreasing strengeh

(a) i) holds, & 4, = ZY, A, = jA,, then (i) holds, and

(b) ¥ (1) holds, & 2, = (X, 2; = j2,, then (iis) holds.

Moreover, if (1i) holds, them in the wniverse R, , 0 is extendible, ie, VA < 4,,
;M2 < Ay such thar
(W) EJQ, 49X, X)and 4 < £Y,

Proow. The first part is obvious. For the second, suppose (i) holds. We note that
Ro < Ry, ic.thatin Ry = R,

(Vx € R)(6%(x) + B X)),

which 15 a statement of the form {f)) Now by the embedding of R, into R,
this means that in R,., o X0, i.c, that ¢(4) or

(Vxe R )% x) = Bx))

which means that R, < R,, Since, for any £ < ', Q is clearly fextendiblen R,
it must also be so in R, as desired.

7. Measures, supercompactness. We now introduce the motion of irreducible
cover. This notion arises paturally when one investigates x-complete ultrafilters
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(0-1 measures). It can be regarded as a generalization of the notion of normal
measure. (A x-complete measure i on x is said to be normal in case (i) if v < x;,
pixexiv < x}w L () of fix—x and p{xifxex} = 1, then there is v e x such
that p{xifx = v} = |. Every measurable cardinal has a pormal measure) A
supercompact cardinal 15 one admitting an irreducible cover of every set. The
terminology and this form of the definition are due to Solovay, the notion inde-
pendently to Solovay and the author. In § 7, Axioms 6.1, 6.3 are not used

Dirvmos 7.1 (a) p & PS s called an ultrafilcron Simcase forall X, Y S §,

() XeporS~ Xep,

() F Xepuand X S Y, then Yepu,

() f X, Yepthen X n Yo

(b) An ultrafilter g s called x-complete if whenever 4 < x and for all v < 4,
X, epalso WX Iv<dlen

(€) A x<complete ultrafilter i is said to be of degree x i it is not x * complete,

Darvimon 7.2, Suppose i is an witrafilter of degree x on S. Then

(a) A function f:S ~ #A 15 saxd to be a cover of A (of degree x) in case

() foreachae A, {xeShe fx]epn,
(1) card fx < x for each xe S,
(b) A cover of A is said to be irreducible if in addition
() whenever g is a function on S and |[x € Sigx € fx} € g, there s an ae A
such that {x € Slgx = a) € u.

Durpnamon 7.3, (a) A cardinal x 1 said 10 be strongly compact in Case every set
has a cover of degree x.

(b) A cardinal x is said to be supercompact in case every set has an irreducible
cover of degree x.

We began by observing that every cover of A of degree x determines a cover
whose space 8 #4 = (H < A|card H < x] and whose covering function is the
wdentity. Namely, if 4’ is the measure on §, define pon & A by Xep iff {xeS) fxe X}
¢ . The degree of g is also x, and of 4’ is an irreducible cover so s u.

Tuzoxym 7.3, If x is extendible then x is supercompact.

Proow. Let A be given; we will get an irreducible cover for 4. Choose 4 > x
so that Ae R;. For convenience we also suppose Z a limit ordinal. By extendi-
bality, choose j, A" so j:R,; & R, with x as critical point. We now nduce an ultra-
Mlter y on #, A by

Xep T SAc)X

where A = | jalae A). Using the identity function, this provides the required
cover of degree x.

We omit the casy proof that w is an ultrafilter. To see it 1s x-complete, bet X € u,
v<Ad<k Nowlet Y= [X Iv < 2). Since 4 < &, jA = A 30 j¥ = [(jX)|r < A}
Similacly AX) = (JX)M¥) = (jX),, 50 J¥Y = [AX )v < 4}. Evidently SAe)Y
simce it is in each XX ).

To see that uis a cover, we must see that for cachae A, f X, = [He F Alae H},
then X, € u Now jX, = (He@ (jA)jae H}, where X' = j. Obviously ja€j" A,
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%0 to get A e jX, it will suffice to sce that /A ¢ @ (jA). Evidently if ae A then
jaEjd, %0 JAS JA. Since card A = card A and A€ R, e R, we must in fact
bavej A e P (jA) Thus uisa cover,

To see that x has degree x, note that if H e # A, then (Y[ X Jae H) & & Thus f
a<x [Hlcard H = card a2} ¢ yu, and we have x sets of measure 0 whose union
i the whole space,

It remains 1o see that the cover is irreducible. Suppase X = (xe # Algxex) e u
Then jX = {xe P, (jANjgixe x|, and since " A& JX, (R A)e JA, ie, there is
ae Asuch that(jg)(i"A) = ja. But this means that "4 € j¥, where ¥ = {xg{x) = a).
Thus we indeed have an irreducible cover.

Rimazk 7.4, For those familiar with the linguistic definition of strong compact-
ness, we sketch the proof of the existence of a cover of A from the x compactness of
L., Let AcR,, Ja limit ordinal. Let T be the complete L, theory of (R,, &)
Add to the language constants ¢, d and sentences saymg “v < ¢ < x" for each
v, and “aed s A&kcardd < x" for ae A If { is the new set of sentences,
clearly cach subset of { of cardinality <x is consistent. Since the sentences include
well-foundedness and extensionality, we may take the model of { to be a transitive
set (M, 6} Putting jx = x*, we hawve j:(R,,€) = <(M, &) with x as critical poinL
There 18 just emough in M so that the argument of the preceding theorem can be
carried through (o show that A has a cover (use & instead of /A 1o induce the
witrafilter) Thus compactness is actually characterized by the existence of j, M
such that for some de M, A G d © jA and (card &Y™ < Jx. (The argement from
a cover to such an M can be given directly using an ultrapower of R, for M.)
The oaly additional thing needed for an irreducible cover is that the type “x # a
& xed" (ae A) be omitted. Thus i seems that supercompactness adds some kind
of type-omitting condition to compactness; how to formulate it precisely s not
ciear however. Supercompactness can also be characterized by the condition on M :
Ome obtains such an M from an ultrafilter  on @, 4 by taking the ultrapower Rf,
which = isomorphic to such an M. The embedding 1s the canonical embedding
into ultrapowers, and it turns out that the identity function on &, A4 represents °A.

8. Using fewer O-classes. In order to express the idea of projecting imagmary
sets and classes we made free use of Q-classes. Now we try to be more efficient.
First there is a rather trivial way we can use fewer (2-classes: We can weaken our
repeesentation of the projected universe of mmaginary objects, and use simply a
well-founded transitive model M instead of a natural model R, Let us look at the
case A= 0+ LWR,,, & <R, ,, then by the downward Léwenhesm-Skolem
theorem and the collapsing lemma there is an M of cardmality 2° with R, , , & M
and R, , = <M 5 <R, ,.and M is therefore a model of (54) and the accom-
panying comprehensson schema. Now we can suppose the clements of M to be
geocrated by a countable number of Skolem functions, and thus to be represented
by terms with sets and classes as parameters, all of which can of course be con-
strued as elements of R, , . It thus scems that in a sense the ontology s limited to
classes, while obtaining the benefits of thinking of proper classes as sets (with the
ensuang higher type objects). The crocial thing however is the relation of member-
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ship among the terms, and a treatment of this requires a further type level. However
in this way we can expeess a significant part of the idea behind (S4) using the uni-
verse Ry, . ;. This is somewhat analogous to (4.2).

We casily see that there are ordinals x, < x, < 2 such that E'(x,:x,) and
E'(x, ; ), which yiclds an analogue of (4.1): Choose €Y, jso j:Rg,, & <Ry, ;.
0 critical point. In R, , , it is expressible, and true, that E'(02; €X) Thus 3xE'(x; 1Y)
must be true in Ry, ; also, ke, 3k, < NE"(x,: 1) Repeating the argument yiclds
x, with the desired properties. In fact, ff x is the normal measure on x given by

Xep—sjx=xejX,

then {x € (4E"(x: €0)} € . Similarly if w oo #(Ry, ,) is induced by (R, . ,), then
{Hs Ry, /(3xeR,_ ., = H <R, ,,}&p Similar results hold for higher types
of extendibility. Note that x, provides an interpretation of 2 which appears com-
pletely adequate for second-order statements.

9. Appraisal. Some comments about what we have tried to accomplish in the
introduction of the concept of extendible cardinal (through § 6.2) may be helpful,
We have tried to indscate that Cantor's 2 & extendible. It s difficult to describe
the epistemological force of thas indication; whether for example it should be
called 3 plausabibty argument or an informal proof, or just 2 proposal for a theory
abouts sets and propertics of sets. Ordinarily a plausibelity argument can repeesent
cither the understanding of a proof, if you already have the proof, or a heuristic
for finding a proof, f you do not yet have one (or & mistake if 1t s simply wrongh
But in the case of an axiom, what does a plausibibity argument repeesent? Perhaps
some insight, or structured collection of insights, into the workings of some con-
cepts (somewhat like mmaginary experiments). In this case the term proofl does not
seem inappropriate i the mnsights are sharp enough. However, such informal
proofs do not always carry conviction, Rather they are attempts to put in cober-
cntly organized form convictions we have perhaps together with some ideas about
the way those convictions arse. While such convictions undoubtedly have an
empirical content, we believe it is a gross exaggeration to say, for example, that we
accept ZF because expenence has oot led to a contradiction (neither has NF)
Our expenence with ZF has perhaps as much to do with the ideas of ZF and the
development of our intustion about sets as with the formal manipulations we make
wsing the theory. There is also the element of appealing to the meanings of concepts,
and the judgment of maturalness in claborating and generalizing such meanings,
and the recognition of analogies. The process by which we decide that some axioms
(such 88 ZF) are correct, or have correct consequences, is of course not well under-
stood. (It does not seem to me that of itself this casts any doubt on the validity of
the decistons. Skepticism applied at the right point always has at Jeast the virtue
of preventing hubris, but applied at the wrong point it may not be beneficial)
Part of the process may involve getting experience with the axioms (such as the
results Solovay has obtained concerning the GCH using large cardinals, or even
the simple observations of § 781 Nevertheless, there must be a first step in
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recognizing axioms, and the foregoing introduction attempts to take such a first
step, a step which will make the axioms seem worth considenng as axioms rather

than merely as conjectures or speculations. Thus we have attempted more than
simply to motivate the mathematical concept of extendible cardinal. Since success
in such informal veatures is not measured by the outcome of & known recursive
procedure, the attempt may miss its mark. But the potential gain seems worth
the risk ; we must always remember that the incompletencss theorems show that
large cardinal considerations have a beaning even on arithmetical problems.
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