Course Syllabus

CS178: Machine Learning & Data Mining

University of California, Irvine, Winter 2021

Prof. Erik Sudderth

How can a machine learn from experience, to become better at challenging tasks? How can we automatically extract knowledge or make sense of massive quantities of data? These are the fundamental questions of machine learning. Machine learning and data mining algorithms combine techniques from statistics, optimization, and computer science to create automated systems which can sift through large volumes of data to make predictions or decisions without human intervention.

The field of machine learning is now pervasive, with applications from the web (search and advertising) to national security, from analyzing biochemical interactions to traffic and climate. The $1M Netflix prize Links to an external site. stirred interest in learning algorithms among professionals, students, and hobbyists; now, websites like Kaggle Links to an external site. host regular open competitions on many companies' data.  This course will familiarize you with a broad cross-section of models and algorithms for machine learning, and prepare you for research or industry applications of machine learning.

Course Materials

Course Information

Course Prerequisites

An introductory course in probability and statistics (STATS 67). Courses in calculus (MATH 2B), linear algebra (MATH 3A or I&C SCI 6N), and discrete mathematics (I&C SCI 6B, I&C SCI 6D). Homework assignments require some Python programming experience, and knowledge about basic data structures and algorithms.

Reference Materials

There is no required textbook for CS178.  The lecture calendar links to supplemental notes for some topics.  Lectures are generally self-contained, but for additional background reading, the following references are freely available online:

The following print textbooks are good quality, but in some cases more advanced or mathematical than this course:

Exams and Course Grades

Course grades will be assigned as follows: 40% homeworks, 40% exams, 20% final projects.  To determine an overall homework score, we will drop your lowest homework score, and average the scores of the other four homeworks equally.  To determine an overall exam score, we will average the scores of the three exams equally.  Exams must be taken on their scheduled dates. Exceptions are granted only for medical or family emergencies.

Course Summary:

Date Details Due